Determination of the Structure of Tetracarbonylnitrosylmanganese by Matrix Isolation Studies

By ANTONY J. REST* and DAVID J. TAYLOR

(Department of Chemistry, The University, Southampton SO9 5NH)

Summary Matrix isolation studies, including ¹³CO enrichment, have demonstrated that the i.r. spectrum of [Mn(CO)₄NO] is consistent with C_{2v} symmetry (trigonal bipyramid with equatorial NO ligand) in accordance with X-ray crystallographic studies; the work resolves the disparity between previous solution i.r. studies (C_{3v}) and X-ray studies (C_{2v}).

IN spite of the widespread and successful use of i.r. spectroscopy as a tool for determining the structure of metal carbonyl and related compounds,¹ some important instances are known where the conclusions drawn from i.r. spectra are

FIGURE. I.r. spectra in the terminal CO-stretching region for $[Mn(CO)_4NO]$ isolated (MR 1:5000) (a) in an argon and (b) in a nitrogen matrix at 12 K. Bands marked * are due to $[Mn(^{12}CO)_{s}^{-1}(^{13}CO)NO]$ in natural abundance. Low temperatures were obtained using an Air Products Displex CSA-202 refrigerator.

at variance with those from other techniques, e.g. $[Fe_3(CO)_{12}]$ and $[Mn(CO)_4NO]$. According to X-ray crystallographic studies² $[Mn(CO)_4NO]$ has a trigonal bipyramidal structure with an equatorial nitrosyl ligand and C_{2v} symmetry whereas, because three terminal CO-stretching bands were observed rather than the four expected for the C_{2v} geometry, a trigonal bipyramidal structure with an axial nitrosyl and C_{3v} symmetry was postulated³ from the solution i.r. spectra.

The Figure shows spectra in the terminal CO-stretching region for [Mn(CO)₄NO] in argon and nitrogen matrices. The spectra are significant in two respects: (i) In an argon matrix three bands are observed for [Mn(12CO)4NO] in agreement with the solution studies, but the half-width at half-height of the band at ca. 2030 $(10 \text{ cm}^{-1}) \text{ cm}^{-1}$ is considerably greater than the half-widths of the other two bands $[5 \text{ cm}^{-1} (2100 \text{ cm}^{-1}); 5 \text{ cm}^{-1} (1980 \text{ cm}^{-1})]$. This indicates that the absorption at $ca. 2030 \text{ cm}^{-1}$ may be due to two overlapping fundamentals. (ii) In a nitrogen matrix the band at ca. 2030 cm⁻¹ is clearly resolved into two components. Matrix splittings⁴ are typically in the range $0-8 \text{ cm}^{-1}$ so that the two components (12 cm^{-1}) separation between band centres) probably correspond to two fundamentals with the multiple splittings observed under higher resolution resulting from matrix effects.

Assigning the split band (2021.4, 2033.2 cm⁻¹) in an N₂ matrix as a single fundamental (cf. argon matrix and solution spectra) and taking a weighted wavenumbers position for it (2029.3 $\rm cm^{-1}),$ a reasonable set 1 of force constants were obtained in a Cotton-Kraihanzel force field $(k_e = 1682 \cdot 1, k_a = 1652 \cdot 3, k_{ae} = 55 \cdot 6, \text{ and } k_{ee} = 19 \cdot 3 \text{ N m}^{-1}),$ which produced the observed frequencies for a C_{3v} [Mn- $(^{12}CO)_4NO$ molecule $(A_1, 2104.7; E, 2029.3; A_1, 1980.8 cm^{-1})$. These force constants, however, when applied to the two mono-enriched forms of $[Mn({}^{13}CO)({}^{12}CO)_{3}NO]$ (C_s, C_{3v}, NO axial) would not reproduce the observed frequencies (Table). The most noticeable differences were in equatorially enriched [Mn(¹³CO)(¹²CO)₃NO] where predicted bands at 1969.2 and 2002.5 cm⁻¹ did not appear in the observed spectrum.

Assigning the terminal CO-stretching bands in N₂ matrices as the four $(A_1, B_1, A_1, \text{and } B_2)$ i.r. active bands expected for C_{2v} symmetry, reasonable¹ values were obtained for the force constants (Table). Using these force constants, isotope spectra were calculated for the two C_s forms of mono-enriched [Mn(¹³CO)(¹²CO)₃NO] species (NO equatorial) and compared with the spectrum obtained for a ¹³CO enriched sample⁵ in an N₂ matrix. The excellent agreement (Table) between calculated and observed bands supports the conclusions drawn from X-ray crystallography that [Mn(CO)₄NO] has a trigonal bipyramidal structure with C_{2v} symmetry and an equatorial NO ligand.

The disparity between previous structural studies can be attributed to the failure³ to resolve the four terminal CO-stretching fundamentals in the solution and gas-phase i.r. spectra. The results obtained for $[Mn(CO)_4NO]$ in matrices

TABLE Observed^a and calculated^b wavenumbers (cm⁻¹) for isotopically substituted [Mn(CO)₄NO] complexes (C_{2v} geometry)

Complex	Symmetry	Observed	Wavenumbers used in calculations	Calculated
[Mn(¹² CO) ₄ NO]	C_{2v} A_1 $\left\{ \begin{array}{ccc} \end{array} \right.$	$2105 \cdot 3$ $2104 \cdot 4$ $2102 \cdot 1$	2104.0	2103-3
		2037.32034.62033.32032.22030.42029.4	2033-2	2033-1
	$A_1 $	2024.7 2023.0 2021.0	2021-4	2021-4
	B_2	$1982 \cdot 9 \\ 1980 \cdot 0 \\ 1977 \cdot 7$	1980.0	1979.8
[Mn(¹² CO) ₃ (¹³ CO)NO] (axial ¹³ CO)	$\begin{array}{ccc} C_s & A' \\ & A' \end{array}$	ca. 2091·2 ca. 2025·3	2091·2° 2025·6°	$2093 \cdot 4$ $2025 \cdot 3$
	A' {	$1997 \cdot 3$ $1994 \cdot 2$ $1990 \cdot 7$	1993-3	1993.5
	A'' {	$1983.0 \\ 1980.4 \\ 1977.3$	1980-2 ^d	1979-8
[Mn(12CO) ₈ (12CO)NO] (equatorial 13CO)	C_s A'	$2099 \cdot 2$ $2096 \cdot 7$ $2095 \cdot 5$	$2097 \cdot 4$	2097.1
	A'' {	$2036 \cdot 1 \\ 2032 \cdot 1 \\ 2030 \cdot 0$	2032-4ª	20 33 ·1
	A'	$\begin{array}{c} 2012 \cdot 6 \\ 2010 \cdot 0 \end{array}$	2011·3°	2012-4
	A' {	1956.7 1951.4 1947.0	1950-1	$1950 \cdot 2$

^a N₂ matrix. ^b $k_a = 1702 \cdot 7$, $k_e = 1641 \cdot 3$, $k_{aa} = 33 \cdot 6$, $k_{ae} = 32 \cdot 9$, and $k_{ee} = 58 \cdot 6$ N m⁻¹, where a = axial and e = equatorial. ^c Band partially obscured by overlap. ^d Band degenerate with [Mn(1²CO)₄NO] parent band in the CO-factored approximation.

at 12 K demonstrate the advantages and importance of chase of a modified Grubb Parsons Spectromajor I.R. matrix isolation as a technique for obtaining high quality Spectrometer) and for a studentship (to D.J.T.). i.r. spectra.

We thank the S.R.C. for a grant (to A.J.R. for the pur-

(Received, 25th March 1977; Com. 281.)

P. S. Braterman, 'Metal Carbonyl Spectra,' Academic Press, London 1975.
B. A. Frenz, J. H. Enemark, and J. A. Ibers, *Inorg. Chem.*, 1969, 8, 1288.
P. M. Treichel, E. Pitcher, R. B. King, and F. G. A. Stone, *J. Amer. Chem. Soc.*, 1961, 83, 2593; I. S. Butler and G. Barna, *Canad.*

J. Spectroscopy, 1972, 17, 2. ⁴ (Vibrational Spectroscopy of Trapped Species,' Ed. H. E. Hallam, Wiley, London, 1973; A. J. Downs and S. C. Peake, in 'Molecular Spectroscopy,' Specialist Periodical Report, The Chemical Society, 1973, vol. 1, p. 523. ⁵ Enriched sample prepared by thermal exchange of [Mn(CO)₄NO] with ¹³CO, A. J. Rest and D. J. Taylor, unpublished work.